If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+12n-6=0
a = 2; b = 12; c = -6;
Δ = b2-4ac
Δ = 122-4·2·(-6)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-8\sqrt{3}}{2*2}=\frac{-12-8\sqrt{3}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+8\sqrt{3}}{2*2}=\frac{-12+8\sqrt{3}}{4} $
| 4/5c+15=59 | | (x)0.27=150000 | | 3.5^x-^1=75 | | 3^(x+3)-3^(x-1)=240 | | 12.50+0.40e=14.17+0.25e | | -28x+56=8 | | 28x+56=8 | | 150000=a.027 | | 9x-25=3x+20 | | 0.17y+0.03(y+4000)=720 | | 355-5a=355+2a | | 355+5a=355-2a | | 6x10^-2x3x10^-4=0 | | -w/9+9=13 | | 2(3x+2)=30 | | 69=c3 | | 130=10v-10 | | 16+4=x+8 | | 7v3=10v5/8v3 | | .9/1.5=12/n | | w/3-8=19 | | 3x-3=-60 | | -2+5(3x+19)=30 | | 2(-1+5p)=8p-1 | | M+1/2=3/4+m/4 | | -3+3x=-48 | | 10=f+11/2 | | -1/2x+17=-4 | | 2(3x-6=48 | | -(2x+13)=-17 | | -1/2(4t-10)=14 | | 0-2m=-10 |